Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35025767

RESUMO

Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.


Assuntos
Asma/imunologia , Receptores Androgênicos/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores Androgênicos/genética , Transdução de Sinais/genética
2.
Biosci Rep ; 40(12)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33169789

RESUMO

Immunotherapy is a breakthrough approach for cancer treatment and prevention. By exploiting the fact that cancer cells have overexpression of tumor antigens responsible for its growth and progression, which can be identified and removed by boosting the immune system. In silico techniques have provided efficient ways for developing preventive measures to ward off cancer. Herein, we have designed a potent cytotoxic T-lymphocyte epitope to elicit a desirable immune response against carcinogenic melanoma-associated antigen-A11. Potent epitope was predicted using reliable algorithms and characterized by advanced computational avenue CABS molecular dynamics simulation, for full flexible binding with HLA-A*0201 and androgen receptor to large-scale rearrangements of the complex system. Results showed the potent immunogenic construct (KIIDLVHLL), from top epitopes using five algorithms. Molecular docking analyses showed the strong binding of epitope with HLA-A*0201 and androgen receptor with docking score of -780.6 and -641.06 kcal/mol, respectively. Molecular dynamics simulation analysis revealed strong binding of lead epitope with androgen receptor by involvement of 127 elements through atomic-model study. Full flexibility study showed stable binding of epitope with an average root mean square deviation (RMSD) 2.21 Å and maximum RMSD value of 6.48 Å in optimal cluster density area. The epitope also showed remarkable results with radius of gyration 23.0777 Å, world population coverage of 39.08% by immune epitope database, and transporter associated with antigen processing (TAP) affinity IC50 value of 2039.65 nm. Moreover, in silico cloning approach confirmed the expression and translation capacity of the construct within a suitable expression vector. The present study paves way for a potential immunogenic construct for prevention of cancer.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Citotoxicidade Imunológica , Desenho de Fármacos , Epitopos de Linfócito T , Proteínas de Neoplasias/uso terapêutico , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia , Algoritmos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Receptores Androgênicos/imunologia , Receptores Androgênicos/metabolismo , Linfócitos T Citotóxicos/metabolismo , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Vacinas de Subunidades/metabolismo , Vacinas de Subunidades/uso terapêutico
3.
Front Immunol ; 11: 519383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193298

RESUMO

Myeloid cells are critical cells involved in the orchestration of innate and adaptive immune responses. Most myeloid cells derive from the adult bone marrow in a process called myelopoiesis, a tightly controlled process that ensures constant production of myeloid cells. Sex differences in myeloid cell development have been observed; males exhibit greater monocytic differentiation in the bone marrow, and men have increased blood monocyte numbers when compared to women. Here we use a genetic mouse model of myeloid androgen receptor (AR) knockout (MARKO) and pharmacological inhibition of AR to investigate the role of androgen signaling in monocytic differentiation. We observe that although myeloid AR signaling does not influence total bone marrow cell numbers, it does affect the composition of the bone marrow myeloid population in both homeostatic and emergency settings. Genetic deletion of AR in myeloid cells led to reduced monocytic development in vivo. Similarly, pharmacologic inhibition of AR signaling in vitro reduced monocytic development. However, alteration in monocytic differentiation in the absence of AR signaling did not lead to reduced numbers of circulating myeloid cells, although MARKO male mice display reduced ratio of classical to non-classical monocytes in the blood, implying that blood monocyte subsets are skewed upon myeloid AR deletion. Our results suggest that the sex differences observed in monocytic differentiation are partly attributed to the positive role of the androgen-AR axis in regulating monocytic development directly at the myeloid cell level. Furthermore, we have identified a novel role for AR in regulating blood mature monocyte subset turnover. Investigating how androgen signaling affects monocytic development and monocyte subset heterogeneity will advance our understanding of sex differences in monocytic function at homeostasis and disease and can ultimately impact future therapeutic design targeting monocytes in the clinic.


Assuntos
Monócitos/imunologia , Mielopoese/imunologia , Receptores Androgênicos/imunologia , Transdução de Sinais/imunologia , Animais , Masculino , Camundongos , Camundongos Knockout , Mielopoese/genética , Receptores Androgênicos/genética , Transdução de Sinais/genética
4.
Front Immunol ; 11: 1184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714315

RESUMO

It is well-known that sex hormones can directly and indirectly influence immune cell function. Different studies support a suppressive role of androgens on different components of the immune system by decreasing antibody production, T cell proliferation, NK cytotoxicity, and stimulating the production of anti-inflammatory cytokines. Androgen receptors have also been detected in many different cells of hematopoietic origin leading to direct effects of their ligands on the development and function of the immune system. The immunosuppressive properties of androgens could contribute to gender dimorphisms in autoimmune and infectious disease and thereby also hamper immune surveillance of tumors. Consistently, females generally are more prone to autoimmunity, while relatively less susceptible to infections, and have lower incidence and mortality of the majority of cancers compared to males. Some studies show that androgen deprivation therapy (ADT) can induce expansion of naïve T cells and increase T-cell responses. Emerging clinical data also reveal that ADT might enhance the efficacy of various immunotherapies including immune checkpoint blockade. In this review, we will discuss the potential role of androgens and their receptors in the immune responses in the context of different diseases. A particular focus will be on cancer, highlighting the effect of androgens on immune surveillance, tumor biology and on the efficacy of anti-cancer therapies including emerging immune therapies.


Assuntos
Androgênios/imunologia , Vigilância Imunológica/imunologia , Neoplasias/imunologia , Receptores Androgênicos/imunologia , Animais , Feminino , Humanos , Masculino , Tolerância a Antígenos Próprios/imunologia
5.
Front Immunol ; 11: 1342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714327

RESUMO

Androgens have profound effects on T cell homeostasis, including regulation of thymic T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i. e., immature T cells that derive from the thymus and continue their maturation to mature naïve T cells in secondary lymphoid organs. Here we investigated the androgen target cell for effects on thymopoiesis and RTEs in spleen and lymph nodes. Male mice with a general androgen receptor knockout (G-ARKO), T cell-specific (T-ARKO), or epithelial cell-specific (E-ARKO) knockout were examined. G-ARKO mice showed increased thymus weight and increased numbers of thymic T cell progenitors. These effects were not T cell-intrinsic, since T-ARKO mice displayed unaltered thymus weight and thymopoiesis. In line with a role for thymic epithelial cells (TECs), E-ARKO mice showed increased thymus weight and numbers of thymic T cell progenitors. Further, E-ARKO mice had more CD4+ and CD8+ T cells in spleen and an increased frequency of RTEs among T cells in spleen and lymph nodes. Depletion of the androgen receptor in epithelial cells was also associated with a small shift in the relative number of cortical (reduced) and medullary (increased) TECs and increased CCL25 staining in the thymic medulla, similar to previous observations in castrated mice. In conclusion, we demonstrate that the thymic epithelium is a target compartment for androgen-mediated regulation of thymopoiesis and consequently the generation of RTEs.


Assuntos
Células Epiteliais/metabolismo , Linfopoese/imunologia , Receptores Androgênicos/metabolismo , Linfócitos T/imunologia , Timo/imunologia , Animais , Células Epiteliais/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/imunologia , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo
6.
Nat Rev Cancer ; 20(8): 455-469, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32546840

RESUMO

Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.


Assuntos
Carcinogênese/imunologia , Inflamação/imunologia , Próstata/imunologia , Neoplasias da Próstata/imunologia , Receptores Androgênicos/imunologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Doença Crônica , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Dano ao DNA/imunologia , Reparo do DNA/genética , Reparo do DNA/imunologia , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/imunologia , Humanos , Inflamação/etiologia , Inflamação/genética , Masculino , Microbiota/imunologia , Obesidade/complicações , Obesidade/imunologia , Comunicação Parácrina/imunologia , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Prostate ; 80(10): 742-752, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449811

RESUMO

BACKGROUND: Docetaxel is an effective first-line chemotherapy agent used in the treatment of castration-resistant prostate cancer (CRPC) patients. However, most times chemotherapy with docetaxel eventually fails due to the development of docetaxel resistance. Natural killer (NK) cells are the first line of defense against cancer and infections. NK cell function is determined by a delicate balance between signals received via activating and inhibitory receptors. The aim of this study is to explore whether the potential docetaxel-resistant mechanism is associated with impaired NK cell cytotoxicity toward CRPC cells. METHODS: By performing MTT assay, we explored the role of docetaxel in regulating NK cells' cytotoxicity. Western blot and quantitative real-time polymerase chain reaction analysis were used to measure messenger RNA and protein levels separately. Luciferase reporter assay and chromatin immunoprecipitation assay were performed to analyze the mechanism. RESULTS: We found that docetaxel could suppress the immunotherapy efficacy of NK cells toward CRPC cells via the androgen receptor (AR)-lectin-like transcript 1 (LLT1) signals in vitro. Analysis of the mechanism revealed that docetaxel functioned through increasing AR to upregulate LLT1 expression in CRPC cells. AR transcriptionally activated LLT1 expression by binding to its promoter region. Furthermore, targeting AR with ASC-J9 or blocking LL1 by anti-human LLT1 monoclonal antibody could reverse the suppressive effect of docetaxel on the immunotherapy efficacy of NK cells toward CRPC cells. CONCLUSIONS: We concluded that chemotherapy agent docetaxel could increase AR that transcriptionally regulated the expression of NK inhibitory ligand LLT1 on CRPC cells. An increase of LL1 may further suppress the immunological efficacy of NK cells to kill CRPC cells. Additionally, targeting AR or blocking LL1 could enhance the immunotherapy efficacy of NK cells toward CRPC cells which might be considered as a new therapeutic option for the prevention or treatment of docetaxel resistance.


Assuntos
Docetaxel/efeitos adversos , Células Matadoras Naturais/efeitos dos fármacos , Lectinas Tipo C/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Receptores Androgênicos/imunologia , Receptores de Superfície Celular/imunologia , Antagonistas de Receptores de Andrógenos/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Técnicas de Cocultura , Terapia Combinada , Curcumina/análogos & derivados , Curcumina/farmacologia , Docetaxel/uso terapêutico , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/biossíntese , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/biossíntese , Receptores Androgênicos/genética , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/biossíntese , Regulação para Cima/efeitos dos fármacos
8.
Urol Clin North Am ; 47(4S): e17-e54, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33446323

RESUMO

Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.


Assuntos
Imunoterapia , Neoplasias da Próstata/imunologia , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Feminino , Humanos , Fatores Imunológicos/imunologia , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Receptores Androgênicos/imunologia , Transdução de Sinais/imunologia , Evasão Tumoral/imunologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/terapia
9.
Anal Chem ; 91(15): 9348-9355, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264404

RESUMO

The analysis of circulating tumor cells (CTCs) provides a means to collect information about the evolving properties of a tumor during cancer progression and treatment. For patients with metastatic prostate cancer, noninvasive serial measurements of bloodborne cells may provide a means to tailor therapeutic decisions based on an individual patient's response. Here, we used a high-sensitivity profiling approach to monitor CTCs in patients with metastatic castrate-resistant prostate cancer (mCRPC) undergoing treatment with abiraterone and enzalutamide, two drugs used to treat advanced prostate cancer. The capture and profiling approach uses antibody-functionalized magnetic nanoparticles to sort cells according to protein expression levels. CTCs are tagged with magnetic nanoparticles conjugated to an antibody specific for the epithelial cell adhesion molecule (EpCAM) and sorted into four zones of a microfluidic device based on EpCAM expression levels. Our approach was compared to the FDA-cleared CellSearch method, and we demonstrate significantly higher capture efficiency of low-EpCAM cells compared to the commercial method. The nanoparticle-based approach detected CTCs from 86% of patients at baseline, compared to CellSearch which only detected CTCs from 60% of patients. Patients were stratified as prostate specific antigen (PSA) progressive versus responsive based on clinically acceptable definitions, and it was observed that patients with a limited response to therapy had elevated levels of androgen receptor variant 7 (ARV7) and the mesenchymal marker, N-cadherin, expressed on their CTCs. In addition, these CTCs exhibited lower EpCAM expression. The results highlight features of CTCs associated with disease progression on abiraterone or enzalutamide, including mesenchymal phenotypes and increased expression levels of ARV7. The use of a high-sensitivity method to capture and profile CTCs provides more informative data concerning the phenotypic properties of these cells as patients undergo treatment relative to an FDA-cleared method.


Assuntos
Nanopartículas de Magnetita/uso terapêutico , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/patologia , Androstenos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Benzamidas , Caderinas/análise , Caderinas/imunologia , Progressão da Doença , Molécula de Adesão da Célula Epitelial/imunologia , Humanos , Nanopartículas de Magnetita/química , Masculino , Nitrilas , Fenótipo , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/análise , Receptores Androgênicos/imunologia
10.
Curr Oncol Rep ; 21(5): 42, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919167

RESUMO

PURPOSE OF REVIEW: Genomic studies of localized and metastatic prostate cancer have identified a high prevalence of clinically actionable alterations including mutations in DNA repair genes. In this manuscript, we review the current knowledge on DNA repair defects in prostate cancer and provide an overview of how these alterations can be targeted towards a personalized prostate cancer management. RECENT FINDINGS: Twenty to 25% of metastatic prostate cancers harbor defects in DNA repair genes, most commonly in the homologous recombination genes. These defects confer increased sensitivity to platinum chemotherapy or poly (ADP-ribose) polymerase (PARP) inhibitors. Recent trials also support a synergistic effect of combining these therapies with androgen receptor-targeting agents. Identification of mismatch-repair defects could result in defining a prostate cancer population who may benefit from immune checkpoint inhibitors. These data have implications for family testing and early diagnosis, as many of these mutations are linked to inherited risk of prostate cancer. The DNA damage repair pathways are clinically relevant in prostate cancer, being a target for precision medicine; combination with standard-of-care androgen receptor (AR)-targeting agents may be synergistic.


Assuntos
Reparo do DNA/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Masculino , Mutação , Platina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/imunologia
11.
Semin Immunopathol ; 41(2): 213-224, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353258

RESUMO

Parasitic infections modulate the immune system of the host, resulting in either immune tolerance or the induction of pro-inflammatory defense mechanisms against the pathogen. In both cases, sex hormones are involved in the regulation of the immune response, as they are present in the systemic circulation and can act on a wide variety of cell types, including immune cells. Men and women have a different milieu of sex hormones, and these hormones play a role in determining immune responses to parasitic infections. Men, who have higher plasma levels of androgens than women, are generally more susceptible to parasitic infections. Many immune cells express the androgen receptor (AR), and the immunologic functions of these cells can be modulated by androgens. In this review, we will highlight the immune cell types that are sensitive to male steroid hormones and describe their roles during three parasitic diseases, amebiasis, leishmaniasis, and helminthiasis.


Assuntos
Androgênios/imunologia , Helmintíase/imunologia , Tolerância Imunológica , Receptores Androgênicos/imunologia , Caracteres Sexuais , Feminino , Humanos , Masculino
12.
J Immunol ; 201(10): 2923-2933, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30305328

RESUMO

Allergic asthma is a disease initiated by a breach of the lung mucosal barrier and an inappropriate Th2 inflammatory immune response that results in M2 polarization of alveolar macrophages (AM). The number of M2 macrophages in the airway correlates with asthma severity in humans. Sex differences in asthma suggest that sex hormones modify lung inflammation and macrophage polarization. Asthmatic women have more M2 macrophages than asthmatic men and androgens have been used as an experimental asthma treatment. In this study, we demonstrate that although androgen (dihydrotestosterone) reconstitution of castrated mice reduced lung inflammation in a mouse model of allergic lung inflammation, it enhanced M2 polarization of AM. This indicates a cell-specific role for androgens. Dihydrotestosterone also enhanced IL-4-stimulated M2 macrophage polarization in vitro. Using mice lacking androgen receptor (AR) in monocytes/macrophages (ARfloxLysMCre), we found that male but not female mice exhibited less eosinophil recruitment and lung inflammation due to impaired M2 polarization. There was a reduction in eosinophil-recruiting chemokines and IL-5 in AR-deficient AM. These data reveal an unexpected and novel role for androgen/AR in promoting M2 macrophage polarization. Our findings are also important for understanding pathology in diseases promoted by M2 macrophages and androgens, such as asthma, eosinophilic esophagitis, and prostate cancer, and for designing new approaches to treatment.


Assuntos
Androgênios/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Eosinofilia Pulmonar/imunologia , Receptores Androgênicos/imunologia , Androgênios/farmacologia , Animais , Asma/imunologia , Castração , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Di-Hidrotestosterona/imunologia , Di-Hidrotestosterona/farmacologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Feminino , Hipersensibilidade/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Eosinofilia Pulmonar/metabolismo
13.
PLoS One ; 13(6): e0196909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912871

RESUMO

There is increasing evidence that Androgen Receptor (AR) expression has prognostic usefulness in Triple negative breast cancer (TNBC), where tumors that lack AR expression are considered "Quadruple negative" Breast Cancers ("QNBC"). However, a comprehensive analysis of AR expression within all breast cancer subtypes or stratified by race has not been reported. We assessed AR mRNA expression in 925 tumors from The Cancer Genome Atlas (TCGA), and 136 tumors in 2 confirmation sets. AR protein expression was determined by immunohistochemistry in 197 tumors from a multi-institutional cohort, for a total of 1258 patients analyzed. Cox hazard ratios were used to determine correlations to PAM50 breast cancer subtypes, and TNBC subtypes. Overall, AR-negative patients are diagnosed at a younger age compared to AR-positive patients, with the average age of AA AR-negative patients being, 49. AA breast tumors express AR at lower rates compared to Whites, independent of ER and PR expression (p<0.0001). AR-negative patients have a (66.60; 95% CI, 32-146) odds ratio of being basal-like compared to other PAM50 subtypes, and this is associated with an increased time to progression and decreased overall survival. AA "QNBC" patients predominately demonstrated BL1, BL2 and IM subtypes, with differential expression of E2F1, NFKBIL2, CCL2, TGFB3, CEBPB, PDK1, IL12RB2, IL2RA, and SOS1 genes compared to white patients. Immune checkpoint inhibitors PD-1, PD-L1, and CTLA-4 were significantly upregulated in both overall "QNBC" and AA "QNBC" patients as well. Thus, AR could be used as a prognostic marker for breast cancer, particularly in AA "QNBC" patients.


Assuntos
Negro ou Afro-Americano , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Receptores Androgênicos/deficiência , Neoplasias de Mama Triplo Negativas , Adulto , Alabama/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/imunologia , Receptores Androgênicos/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
14.
Prostate ; 78(8): 595-606, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29527701

RESUMO

BACKGROUND: In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR+ ) PCa cells into AR negative (AR- ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. METHODS: LNCaP and PC3 PCa cells were treated with IL-1ß or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1ß, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. RESULTS: Comparative analysis of sequencing data from the AR+ LNCaP PCa cell line versus the AR- PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. CONCLUSIONS: Our data supports that IL-1 reprograms AR+ PCa cells to mimic AR- PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival.


Assuntos
Interleucina-1/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1/imunologia , Masculino , Células-Tronco Mesenquimais , Fenótipo , Neoplasias da Próstata/imunologia , Receptores Androgênicos/imunologia , Microambiente Tumoral/imunologia
15.
Cancer Immunol Res ; 5(12): 1074-1085, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29051161

RESUMO

Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Receptores Androgênicos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunização , Imuno-Histoquímica , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Receptores Androgênicos/imunologia , Receptores Androgênicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell Biol Int ; 41(11): 1223-1233, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28244686

RESUMO

The prostate gland is a strictly androgen-dependent organ which is also the main target of infectious and inflammatory diseases in the male reproductive tract. Host defenses and immunity of the gland have unique features to maintain a constant balance between response and tolerance to diverse antigens. In this context, the effects of reproductive hormones on the male tract are thus complex and have just started to be defined. From the classical description of "the prostatic antibacterial factor," many host defense proteins with potent microbicidal and anti-tumoral activities have been described in the organ. Indeed, it has been proposed a central role for resident cells, that is, epithelial and smooth muscle cells, in the prostatic response against injuries. However, these cells also represent the target of the inflammatory damage, leading to the development of a Proliferative Inflammatory Atrophy-like process in the epithelium and a myofibroblastic-like reactive stroma. Available data on androgen regulation of inflammation led to a model of the complex control, in which the final effect will depend on the tissue microenvironment, the cause of inflammation, and the levels of androgens among other factors. In this paper, we review the current scientific literature about the inflammatory process in the gland, the modulation of host defense proteins, and the influence of testosterone on the resolution of prostatitis.


Assuntos
Androgênios/imunologia , Próstata/imunologia , Androgênios/metabolismo , Androgênios/fisiologia , Animais , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Próstata/metabolismo , Receptores Androgênicos/imunologia , Receptores Androgênicos/metabolismo , Testosterona/imunologia , Testosterona/metabolismo
17.
Prostate ; 77(7): 812-821, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28181678

RESUMO

BACKGROUND: The androgen receptor (AR) is a key oncogenic driver of prostate cancer, and has been the primary focus of prostate cancer treatment for several decades. We have previously demonstrated that the AR is also an immunological target antigen, recognized in patients with prostate cancer, and targetable by means of vaccines in rodent models with delays in prostate tumor growth. The current study was performed to determine the safety and immunological efficacy of a GMP-grade plasmid DNA vaccine encoding the ligand-binding domain (LBD) of the AR, pTVG-AR. METHODS: Groups of male mice (n = 6-10 per group) were evaluated after four or seven immunizations, using different schedules and inclusion of GM-CSF as a vaccine adjuvant. Animals were assessed for toxicity using gross observations, pathological analysis, and analysis of serum chemistries. Animals were analyzed for evidence of vaccine-augmented immunity by tetramer analysis. Survival studies using different immunization schedules and inclusion of GM-CSF were conducted in an autochthonous genetically engineered mouse model. RESULTS: No significant toxicities were observed in terms of animal weights, histopathology, hematological changes, or changes in serum chemistries, although there was a trend to lower serum glucose in animals treated with the vaccine. There was specifically no evidence of toxicity in other tissues that express AR, including liver, muscle, hematopoietic, and brain. Vaccination was found to elicit AR LBD-specific CD8+ T cells. In a subsequent study of tumor-bearing animals, animals treated with vaccine had prolonged survival compared with control-immunized mice. CONCLUSIONS: These studies demonstrate that, in immunocompetent mice expressing the target antigen, immunization with the pTVG-AR vaccine was both safe and effective in eliciting AR-specific cellular immune responses, and prolonged the survival of prostate tumor-bearing mice. These findings support the clinical evaluation of pTVG-AR in patients with recurrent prostate cancer. Prostate 77:812-821, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Neoplasias da Próstata , Receptores Androgênicos/imunologia , Vacinas de DNA , Adjuvantes Imunológicos/administração & dosagem , Animais , Masculino , Camundongos , Monitorização Imunológica/métodos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia
18.
Cancer Immunol Immunother ; 66(5): 615-625, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28229217

RESUMO

Tumors evade immune recognition and destruction in many ways including the creation of an immune-suppressive tumor microenvironment (TME). Dendritic cells (DC) that infiltrate the TME are tolerogenic, and suppress effector T cells and anti-tumor activity. Previous reports demonstrated that a key regulator of tolerance in DC is the transcription factor FOXO3. Gender disparity has been studied in cancer in relation to incidence, aggressiveness, and prognosis. Few studies have touched on the importance in relation to impact on the immune system. In the current study, we show that there are significant differences in tumor growth between males and females. Additionally, frequencies and the function of FOXO3 expressed by DC subsets that infiltrate tumors vary between genders. Our results show for the first time that DC FOXO3 expression and function is altered in females. In vitro results indicate that these differences may be the result of exposure to estrogen. These differences may be critical considerations for the enhancement of immunotherapy for cancer.


Assuntos
Células Dendríticas/imunologia , Receptor alfa de Estrogênio/imunologia , Proteína Forkhead Box O3/metabolismo , Imunoterapia Adotiva/métodos , Melanoma Experimental/imunologia , Receptores Androgênicos/imunologia , Animais , Feminino , Proteína Forkhead Box O3/genética , Masculino , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores Sexuais
19.
Mol Cell ; 63(6): 976-89, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27594448

RESUMO

Prostate inflammation has been suggested as an etiology for benign prostatic hyperplasia (BPH). We show that decreased expression of the androgen receptor (AR) in luminal cells of human BPH specimens correlates with a higher degree of regional prostatic inflammation. However, the cause-and-effect relationship between the two events remains unclear. We investigated specifically whether attenuating AR activity in prostate luminal cells induces inflammation. Disrupting luminal cell AR signaling in mouse models promotes cytokine production cell-autonomously, impairs epithelial barrier function, and induces immune cell infiltration, which further augments local production of cytokines and chemokines including Il-1 and Ccl2. This inflammatory microenvironment promotes AR-independent prostatic epithelial proliferation, which can be abolished by ablating IL-1 signaling or depleting its major cellular source, the macrophages. This study demonstrates that disrupting luminal AR signaling promotes prostate inflammation, which may serve as a mechanism for resistance to androgen-targeted therapy for prostate-related diseases.


Assuntos
Células Epiteliais/metabolismo , Homeostase/genética , Macrófagos/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/genética , Receptores Androgênicos/genética , Animais , Proliferação de Células , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Homeostase/imunologia , Humanos , Inflamação , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Infiltração de Neutrófilos , Próstata/imunologia , Próstata/patologia , Hiperplasia Prostática/imunologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Receptores Androgênicos/imunologia , Transdução de Sinais , Células Estromais/imunologia , Células Estromais/metabolismo , Células Estromais/patologia
20.
J Steroid Biochem Mol Biol ; 163: 173-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27210415

RESUMO

Male fetus and neonates show increased immune vulnerability compared to females, which results in a higher risk of perinatal infections. These differences could partially be due to sex steroids differential modulation of vitamin D metabolism; since calcitriol, the most active vitamin D metabolite, regulates immune responses and transcriptionally induces the antimicrobial peptide cathelicidin in the human placenta. Calcitriol availability depends on CYP27B1 and CYP24A1 expression, the cytochromes involved in its synthesis and degradation, respectively. However, the effects of testosterone upon these enzymes and the final biological outcome upon the calcitriol-dependent immune-target cathelicidin in the placenta have not been studied. In this study we show that testosterone significantly inhibited CYP27B1 while stimulated CYP24A1 gene expression in cultured trophoblasts. These effects were accompanied by CREB activation through cAMP-independent and androgen receptor-dependent mechanisms. Male placental cotyledons showed reduced basal CYP27B1 and cathelicidin gene expression compared to females (P<0.05). Testosterone concentration was higher in the cord blood of male neonates (P=0.007), whereas cathelicidin levels were lesser compared to females (P=0.002). Altogether our results suggest that male placentas produce less cathelicidin due to decreased calcitriol bioavailability. We propose that the observed sex-dependent differences in placental vitamin D metabolism contribute in fetal responses to infections and could partially explain why the increased male fetuses immune vulnerability. Moreover, gestational hyperandrogenemia could adversely affect placental vitamin D metabolism independently of fetal sex.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Catelicidinas/genética , Testosterona/farmacologia , Trofoblastos/efeitos dos fármacos , Vitamina D3 24-Hidroxilase/genética , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/imunologia , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Feminino , Feto , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Inata , Masculino , Gravidez , Cultura Primária de Células , Receptores Androgênicos/genética , Receptores Androgênicos/imunologia , Caracteres Sexuais , Transdução de Sinais , Testosterona/metabolismo , Trofoblastos/citologia , Trofoblastos/imunologia , Vitamina D/farmacologia , Vitamina D3 24-Hidroxilase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...